3.391 \(\int \frac {\tanh ^{-1}(a x)}{(1-a^2 x^2)^{3/2}} \, dx\)

Optimal. Leaf size=40 \[ \frac {x \tanh ^{-1}(a x)}{\sqrt {1-a^2 x^2}}-\frac {1}{a \sqrt {1-a^2 x^2}} \]

[Out]

-1/a/(-a^2*x^2+1)^(1/2)+x*arctanh(a*x)/(-a^2*x^2+1)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 40, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.053, Rules used = {5958} \[ \frac {x \tanh ^{-1}(a x)}{\sqrt {1-a^2 x^2}}-\frac {1}{a \sqrt {1-a^2 x^2}} \]

Antiderivative was successfully verified.

[In]

Int[ArcTanh[a*x]/(1 - a^2*x^2)^(3/2),x]

[Out]

-(1/(a*Sqrt[1 - a^2*x^2])) + (x*ArcTanh[a*x])/Sqrt[1 - a^2*x^2]

Rule 5958

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))/((d_) + (e_.)*(x_)^2)^(3/2), x_Symbol] :> -Simp[b/(c*d*Sqrt[d + e*x^2]
), x] + Simp[(x*(a + b*ArcTanh[c*x]))/(d*Sqrt[d + e*x^2]), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0
]

Rubi steps

\begin {align*} \int \frac {\tanh ^{-1}(a x)}{\left (1-a^2 x^2\right )^{3/2}} \, dx &=-\frac {1}{a \sqrt {1-a^2 x^2}}+\frac {x \tanh ^{-1}(a x)}{\sqrt {1-a^2 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.04, size = 27, normalized size = 0.68 \[ \frac {a x \tanh ^{-1}(a x)-1}{a \sqrt {1-a^2 x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[ArcTanh[a*x]/(1 - a^2*x^2)^(3/2),x]

[Out]

(-1 + a*x*ArcTanh[a*x])/(a*Sqrt[1 - a^2*x^2])

________________________________________________________________________________________

fricas [A]  time = 0.51, size = 47, normalized size = 1.18 \[ -\frac {\sqrt {-a^{2} x^{2} + 1} {\left (a x \log \left (-\frac {a x + 1}{a x - 1}\right ) - 2\right )}}{2 \, {\left (a^{3} x^{2} - a\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(a*x)/(-a^2*x^2+1)^(3/2),x, algorithm="fricas")

[Out]

-1/2*sqrt(-a^2*x^2 + 1)*(a*x*log(-(a*x + 1)/(a*x - 1)) - 2)/(a^3*x^2 - a)

________________________________________________________________________________________

giac [A]  time = 0.33, size = 59, normalized size = 1.48 \[ -\frac {\sqrt {-a^{2} x^{2} + 1} x \log \left (-\frac {a x + 1}{a x - 1}\right )}{2 \, {\left (a^{2} x^{2} - 1\right )}} - \frac {1}{\sqrt {-a^{2} x^{2} + 1} a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(a*x)/(-a^2*x^2+1)^(3/2),x, algorithm="giac")

[Out]

-1/2*sqrt(-a^2*x^2 + 1)*x*log(-(a*x + 1)/(a*x - 1))/(a^2*x^2 - 1) - 1/(sqrt(-a^2*x^2 + 1)*a)

________________________________________________________________________________________

maple [A]  time = 0.27, size = 38, normalized size = 0.95 \[ -\frac {\sqrt {-a^{2} x^{2}+1}\, \left (a x \arctanh \left (a x \right )-1\right )}{a \left (a^{2} x^{2}-1\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arctanh(a*x)/(-a^2*x^2+1)^(3/2),x)

[Out]

-1/a*(-a^2*x^2+1)^(1/2)*(a*x*arctanh(a*x)-1)/(a^2*x^2-1)

________________________________________________________________________________________

maxima [A]  time = 0.30, size = 36, normalized size = 0.90 \[ \frac {x \operatorname {artanh}\left (a x\right )}{\sqrt {-a^{2} x^{2} + 1}} - \frac {1}{\sqrt {-a^{2} x^{2} + 1} a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(a*x)/(-a^2*x^2+1)^(3/2),x, algorithm="maxima")

[Out]

x*arctanh(a*x)/sqrt(-a^2*x^2 + 1) - 1/(sqrt(-a^2*x^2 + 1)*a)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \[ \int \frac {\mathrm {atanh}\left (a\,x\right )}{{\left (1-a^2\,x^2\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(atanh(a*x)/(1 - a^2*x^2)^(3/2),x)

[Out]

int(atanh(a*x)/(1 - a^2*x^2)^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\operatorname {atanh}{\left (a x \right )}}{\left (- \left (a x - 1\right ) \left (a x + 1\right )\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(atanh(a*x)/(-a**2*x**2+1)**(3/2),x)

[Out]

Integral(atanh(a*x)/(-(a*x - 1)*(a*x + 1))**(3/2), x)

________________________________________________________________________________________